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Summary

We analyzed the European genetic contribution to 10
populations of African descent in the United States
(Maywood, Illinois; Detroit; New York; Philadelphia;
Pittsburgh; Baltimore; Charleston, South Carolina; New
Orleans; and Houston) and in Jamaica, using nine au-
tosomal DNA markers. These markers either are pop-
ulation-specific or show frequency differences 145% be-
tween the parental populations and are thus especially
informative for admixture. European genetic ancestry
ranged from 6.8% (Jamaica) to 22.5% (New Orleans).
The unique utility of these markers is reflected in the
low variance associated with these admixture estimates
(SEM 1.3%–2.7%). We also estimated the male and fe-
male European contribution to African Americans, on
the basis of informative mtDNA (haplogroups H and L)
and Y Alu polymorphic markers. Results indicate a sex-
biased gene flow from Europeans, the male contribution
being substantially greater than the female contribution.
mtDNA haplogroups analysis shows no evidence of a
significant maternal Amerindian contribution to any of
the 10 populations. We detected significant nonrandom
association between two markers located 22 cM apart
(FY-null and AT3), most likely due to admixture linkage
disequilibrium created in the interbreeding of the two
parental populations. The strength of this association
and the substantial genetic distance between FY and AT3
emphasize the importance of admixed populations as a
useful resource for mapping traits with different prev-
alence in two parental populations.
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Introduction

The history of African Americans can be traced back to
1619, when the first Africans arrived at the British col-
onies (Jamestown, Virginia), although the presence of
African slaves has been reported as early as 1526 in
Spanish expeditions to what would become South Car-
olina, Georgia, Florida, and New Mexico (Piersen
1996). Although institutional slavery began very soon
after, it was not until the beginning of the 18th century
that the importation of slaves reached significant rates,
in parallel with the demand for workers to cultivate the
tobacco, indigo, and rice plantations in the southern
colonies. The highest peaks occurred during 1790–1800
and the first years of the 19th century. In 1808, slave
trade became illegal but continued at a low rate for
several more decades (Tanner 1995). Various estimates
of the total number of slaves imported into the United
States have been offered, with generally accepted num-
bers in the range 380,000–570,000 (Curtin 1969; John-
son and Campbell 1981). At present, 133 million U.S.
residents are of African descent (U.S. Census Bureau).

Although it is very difficult to determine the precise
ethnic origins of the African slaves, information from
shipping lists has provided an approximate picture of
their geographic provenance. The slave trade affected a
very wide area of western and west central Africa,
mainly the coastline between present-day Senegal in the
north and Angola in the south. The most important
regions were Senegambia (Gambia and Senegal), Sierra
Leone (Guinea and Sierra Leone), Windward Coast
(Ivory Coast and Liberia), Gold Coast (Ghana), Bight
of Benin (from the Volta River to the Benin River), Bight
of Biafra (east of the Benin River to Gabon), and Angola
(southwest Africa, including part of Gabon, Congo, and
Angola). Curtin (1969) has offered, on the basis of data
on English trade during the 18th century (the peak of
the Atlantic slave trade), estimates of the proportional
contributions by areas. His analysis shows that Angola
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Table 1

Populations Analyzed in the Present Study

Population n

Africans:
Nigeria-1 46
Nigeria-2 100
Central African Republic 49

African Americans:
Maywood, Ill. 100
Detroit 47
New York 93
Philadelphia-1 175
Philadelphia-2 126
Pittsburgh 84
Baltimore 96
Charleston, S.C. 94
New Orleans 105
Houston 100

Jamaicans 102
Europeans:

England 44
Ireland 86
Germany 30

European Americans:
Detroit 48
Pittsburgh 30
Louisiana (Cajuns) 47

and Bight of Biafra contributed the highest numbers of
slaves imported into the North American mainland
(∼25% each). However, there were significant differ-
ences in ethnic origin depending on the port of entry in
the United States, and the figures for the colonies of
Virginia and South Carolina differed considerably.

The history of African Americans has been marked
not only by the forced migration from Africa, but also
by admixture with the other ethnic groups they met
when they arrived in North America—namely, Euro-
peans and Native Americans. Determination of the ex-
tent of that hybridization is of great anthropological,
epidemiological, and historical interest. Unfortunately,
although the first attempts to characterize admixture
proportions in African Americans by means of genetic
markers dates back to the 1950s (Glass and Li 1953),
the field remains underdeveloped. The main limitations
for obtaining precise admixture estimates have been the
limited number of classical or DNA markers appropriate
for this type of study and the scarcity of data concerning
the distribution of allele frequencies in the parental pop-
ulations, particularly in Africa. In the last few years,
however, the number of dimorphic and hypervariable
markers showing large frequency differentials between
the major geographic or ethnic groups has increased sub-
stantially (Shriver et al. 1997). These markers, which we
have designated “population-specific alleles” (“PSAs”)
are potentially very useful in forensic anthropology, ep-
idemiology, and population genetics.

Recently, we initiated a project to systematically char-
acterize admixture proportions in populations through-
out the United States and in Jamaica, using autosomal
PSAs. In this article we present data with regard to 10
populations of African descent from nine different areas
of the United States and from Jamaica. Two of the mark-
ers we have used (FY-Null and ICAM) have alleles that
are found only in persons with African ancestry, whereas
eight (FY-Null, AT3, APO, GC, LPL, OCA2, RB2300
and Sb19.3) show differences in allele frequency 148%
between Africans and Europeans. Using markers with
unique alleles (those found in only one population;
Chakraborty et al. 1992) and PSAs (those with high
levels of allele frequency differential; Shriver et al. 1997),
it is possible to generate more precise estimates of the
ancestral proportions of an admixed population. In an
effort to obtain the best possible estimates of the parental
frequencies of these markers, we also analyzed three
samples from Africa (two from Nigeria and one from
Central African Republic) and three from Europe (Eng-
land, Ireland, and Germany). We discuss the estimates
of admixture in 10 populations of African descent in the
context of the history of African American populations
and previous genetic studies on admixture proportions
in these groups. We also estimated the male and female
European contribution to African Americans on the ba-

sis of mtDNA (haplogroups H and L) and Y Alu poly-
morphic (YAP) informative markers. To evaluate the ex-
tent of the Amerindian contribution to the African
American gene pool, we looked for the presence of the
Amerindian-specific mtDNA haplogroups (A, B, C, and
D). Finally, we emphasize the importance of admixed
populations in mapping disease genes showing preva-
lence differences between ethnic groups by taking ad-
vantage of the linkage disequilibrium created when pop-
ulations hybridize.

Subjects and Methods

Subjects

The subjects analyzed in this study came from a num-
ber of sources, primarily paternity identity testing labs
(the Detroit, Houston, and New Orleans samples), an-
thropological studies, and volunteers in medical studies.
Table 1 shows the names of the populations analyzed
and the number of individuals studied. The samples from
Maywood (Illinois), Jamaica, and Nigeria-2 (from a tra-
ditional Yoruba community in the city of Ibadan, in
southwestern Nigeria) were collected as healthy random
subjects in an ongoing study of hypertension (see Ata-
man et al. 1996 and Cooper et al. 1997). The Nigeria-
1 sample was collected from a group of civil servants in
Benin City, Nigeria. The Central African Republic sam-
ple was collected as part of an anthropological survey
of a village along the Oubangui river near the capital,
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Bangui. Related individuals were excluded from the sam-
ple. The New York sample comprised case and control
subjects in an ongoing study of obesity in African Amer-
icans being conducted at Columbia University. Both
samples from Philadelphia were collected as healthy con-
trol subjects during independent studies of hypertension
in the African American population of Philadelphia. The
Baltimore sample was collected as part of a study on the
dynamics of HIV infection among intravenous drug
users. The sample from Charleston was collected as part
of a study on efforts for prenatal lead screening. All
subjects in the Charleston sample were pregnant women.
The samples of Europeans from Germany, Ireland, and
England were collected at random as part of anthro-
pological surveys.

Primer Sequences and PCR Conditions

The identified PSA markers were genotyped by stan-
dard PCR and electrophoretic separation of DNA frag-
ments. Tables 2 and 3 show the sequences of the PCR
primers and the reaction conditions for the autosomal
PSA and sex-linked markers, respectively. Most of these
markers are restriction site polymorphisms, which are
detected by digestion with the appropriate restriction
enzyme after PCR. All of these loci, except FY-Null and
ICAM, were scored after electrophoresis through aga-
rose gels. The fragments generated by the FY and ICAM
digestions were smaller and required electrophoresis
through polyacrylamide gels for accurate fragment
sizing.

Statistical Analysis

The admixture proportions of the African American
and European American populations were estimated by
means of the weighted least squares (WLS) (Long 1991)
and gene identity (Chakraborty 1975) methods. Long’s
method incorporates the effect of the evolutionary and
sampling variance in the admixture estimates and a x2

test of heterogeneity of admixture estimates from the
different loci. A computer program implementing this
method (ADMIX.PAS) was kindly provided by Dr. Jef-
frey C. Long (National Institute on Alcohol Abuse and
Alcoholism, National Institutes of Health). Dr. Ranajit
Chakraborty (University of Texas Health Science Center,
Houston) kindly provided a program (ADMIX2.FOR)
for the estimation of admixture proportions by means
of the gene identity method.

Haplotype frequencies and gametic disequilibrium co-
efficients for pairs of loci were estimated by means of
an expectation maximization algorithm described by
Long et al. (1995). Hypothesis testing was performed
with the likelihood ratio statistic (G2), which has a x2

distribution for large sample sizes. Alternatively, by a
data-resampling approach, this program estimates the

distribution of test statistics for the observed data given
there was no association (Long et al. 1995). We used a
simulated distribution based on 1,000 replications. A
program (3LOCUS.PAS) implementing the aforemen-
tioned method was made available by Dr. Long. D′ co-
efficients, in which the gametic disequilibrium (D) is
standardized by the theoretical maximum disequilibrium
(Dmax), were calculated on the basis of the estimated
haplotype frequencies (Lewontin 1964, 1988; Thomson
et al. 1988).

The fit of the genotype frequencies to the Hardy-Wein-
berg proportions was tested by Guo and Thomson’s ex-
act test (Guo and Thomson 1992) with the program
ARLEQUIN 1.0 (Schneider et al. 1997), and the het-
erogeneity in the allele frequencies of the parental pop-
ulations was analyzed by means of the STRUC program
of the GENEPOP 2.0 computer package (Raymond and
Rousset 1995).

Results

Admixture Estimates Based on Autosomal PSAs

Using nine autosomal PSA markers, we estimated the
admixture proportions in samples from several popu-
lations of African descent. We also typed parental pop-
ulation samples from Africa (Nigeria and Central Af-
rican Republic) and Europe (England, Ireland, and
Germany) to verify the PSA status of the loci, to test for
intracontinental heterogeneity, and to estimate the pa-
rental allele frequencies. Table 4 shows the allele fre-
quencies estimated for the populations typed. All of the
loci we used, except GC, are biallelic, and we show the
frequency of the *1 allele, following the convention that
the *1 allele corresponds to the larger band on the gel
because of either the presence of an insertion or the
absence of a restriction enzyme cut site. In Table 4, we
also show the average of the parental allele frequencies
for African and European populations and the levels of
allele frequency differential for each marker. We detected
no systematic deviations of the genotype frequencies
with respect to the Hardy-Weinberg proportions in any
population or marker (data not shown).

Table 5 summarizes the admixture results for the Af-
rican American and Jamaican populations that we have
analyzed. Shown is the city and state where the sample
was collected and the proportion of European ancestry
(m) in the population, obtained by two different methods
to estimate admixture—the WLS method (Long 1991)
and the gene identity method (Chakraborty 1975). The
results of these methods are highly concordant (r �

, ). The level of European admixture in0.9949 P ! .001
these groups ranges from 6.8% in Jamaica to 22.5% in
New Orleans. In the northern urban populations, we
observed m values between 12.7% (Philadelphia) and



Ta
bl

e
2

Pr
im

er
Se

qu
en

ce
s

an
d

PC
R

C
on

di
ti

on
s

fo
r

th
e

PS
A

s
Ty

pe
d

in
th

e
Pr

es
en

t
St

ud
y

L
oc

us
Ty

pe
Pr

im
er

D
N

A
Se

qu
en

ce
PC

R
a

(�
C

)
M

gC
l 2

(m
M

)
N

ot
es

R
ef

er
en

ce

A
PO

A
lu

in
s

A
PO

4-
F

A
A

G
T

G
C

T
G

T
A

G
G

C
C

A
T

T
T

A
G

A
T

T
A

G
94

/5
0/

72
2.

0
1-

m
in

ut
e

ex
te

ns
io

n
B

at
ze

r
et

al
.

19
96

A
PO

4-
R

A
G

T
C

T
T

C
G

A
T

G
A

C
A

G
C

G
T

A
T

A
C

A
G

A
A

T
3-

I/
D

68
-b

p
in

s/
de

l
A

T
3i

d-
F

C
C

A
C

A
G

G
T

G
T

A
A

C
A

T
T

G
T

G
T

94
/5

5/
72

2.
0

L
iu

et
al

.
19

95
A

T
3i

d-
R

G
A

G
A

T
A

G
T

G
T

G
A

T
C

T
G

A
G

G
C

G
C

St
yI

�
H

ae
II

I
G

C
-F

A
G

A
T

C
T

G
A

A
A

T
G

G
C

T
A

T
T

A
T

T
T

T
G

C
94

/5
5/

72
2.

0
Pr

es
en

t
st

ud
y

G
C

-R
G

G
A

G
G

T
G

A
G

T
T

T
A

T
G

G
A

A
C

A
G

C
FY

-n
ul

l
St

yI
P3

8
A

G
G

C
T

T
G

T
G

C
A

G
G

C
A

G
T

G
94

/5
5/

72
1.

0
N

o
tr

it
on

To
ur

na
m

ill
e

et
al

.
19

95
P3

9
G

G
C

A
T

A
G

G
G

A
T

A
A

G
G

G
A

C
T

IC
A

M
-1

N
aI

II
I

IC
A

M
-F

C
C

C
C

T
C

A
A

A
A

G
T

C
A

T
C

C
T

G
C

94
/6

0/
72

1.
5

Fe
rn

an
de

z-
R

ey
es

et
al

.
19

97
IC

A
M

-R
C

A
T

A
C

A
C

C
T

T
C

C
G

G
T

T
G

T
T

C
L

PL
P

vu
II

L
PL

-R
A

G
G

C
T

T
C

A
C

T
C

A
T

C
C

G
T

G
C

C
T

C
C

94
/6

0/
72

1.
5

0.
1%

tr
it

on
G

ot
od

a
et

al
.

19
92

L
PL

-L
T

T
A

T
G

C
T

G
C

T
T

T
A

G
A

C
T

C
T

T
G

T
C

O
C

A
2

H
ae

II
I

O
C

A
2-

10
-F

C
T

T
T

C
G

T
G

T
G

T
G

C
T

A
A

C
T

C
C

94
/6

0/
72

2.
5

L
ee

et
al

.
19

95
O

C
A

2-
10

-R
A

C
C

T
C

T
A

G
C

A
T

G
G

T
T

C
T

T
G

G
G

C
R

B
23

00
B

am
H

I
R

B
23

00
-A

C
A

G
G

A
C

A
G

C
G

G
C

C
C

G
G

A
G

94
/6

0/
72

1.
5

10
%

D
M

SO
b

B
oo

ks
te

in
et

al
.

19
90

R
B

23
00

-B
C

T
G

C
A

G
A

C
G

C
T

C
C

G
C

C
G

T
Sb

19
.3

A
lu

in
s

Sb
19

.3
-F

T
C

T
A

G
C

C
C

C
A

G
A

T
T

T
A

T
G

G
T

A
A

C
T

G
94

/6
0/

72
2.

0
1-

m
in

ut
e

ex
te

ns
io

n
Pr

es
en

t
st

ud
y

Sb
19

.3
-R

A
A

G
C

A
C

A
A

T
T

G
G

T
T

A
T

T
T

T
C

T
G

A
C

a
PC

R
co

nd
it

io
ns

:
A

ft
er

an
in

it
ia

l
de

na
tu

ra
ti

on
fo

r
5

m
in

at
94

�C
,

D
N

A
sa

m
pl

es
w

er
e

am
pl

ifi
ed

fo
r

30
cy

cl
es

at
th

e
de

na
tu

ra
ti

on
/a

nn
ea

lin
g/

ex
te

ns
io

n
te

m
pe

ra
tu

re
s

sp
ec

ifi
ed

fo
r

ea
ch

m
ar

ke
r,

fo
llo

w
ed

by
a

fin
al

ex
te

ns
io

n
fo

r
5

m
in

at
72

�C
.

U
nl

es
s

ot
he

rw
is

e
in

di
ca

te
d,

de
na

tu
ra

ti
on

,a
nn

ea
lin

g,
an

d
ex

te
ns

io
n

ti
m

es
w

er
e

30
s.

A
m

pl
ifi

ca
ti

on
s

w
er

e
pe

rf
or

m
ed

in
a

25
-m

l
re

ac
ti

on
vo

lu
m

e
co

nt
ai

ni
ng

20
0

m
M

dN
T

Ps
,

10
m

M
T

ri
s-

H
C

l
(p

H
8.

9)
,

50
m

M
K

C
l,

0.
1%

T
ri

to
n

X
-1

00
,

1
U

T
aq

po
ly

m
er

as
e,

an
d

20
ng

ge
no

m
ic

D
N

A
.

b
D

M
SO

�
di

m
et

hy
l

su
lf

ox
id

e.



Parra et al.: African American Admixture 1843

Table 3

Primer Sequences and PCR Conditions for the mtDNA and Y Chromosome Polymorphisms Typed in
the Present Study

Locus Type Primer DNA Sequence
PCRa

(�C)
MgCl2
(mM)

mtDNA
HAP-L HapI 3457-F GACGCCATAAAACTCTTCAC 94/55/72 1.5

3661-R TCAGAGGATTGAGTAAACGG
HAP-H AluI 6960-F CTGACTGGCATTGTATTAGC 94/55/72 1.5

7117-R AGGGTGTAGCCTGAGAATAG
HAP-A HaeIII 577-F GTTTATGTAGCTTACCTCCTC 94/55/72 1.5

743-R GATCGTGGTGATTTAGAGGGTG
HAP-B 9-bp ins 8195-F ATGCTAAGTTAGCTTTACAG 94/50/72 2.0

8317-R ACAGTTTCATGCCCATCGTC
HAP-C HineII 13208-F CGCCCTTACACAAAATGACATCAA 94/55/72 2.0

13413-R ATTTTTCGAATATCTTGTTC
HAP-D AluI 5099-F CCTAACTACTACCGCATTCCTAC 94/50/72 2.0

5274-R CTTCGATAATGGCCCATTTGGGC
Y chromosome

YAP Alu Seq YAP-1 CAGGGGAAGATAAAGAAATA 94/55/72 2.0
YAP-2 ACTGCTAAAAGGGGATGGAT

a PCR conditions: After an initial denaturation for 5 min at 94�C, DNA samples were amplified for
30 cycles at the denaturation/annealing/extension temperatures specified for each marker, followed by a
final extension for 5 min at 72�C. Denaturation, annealing, and extension times were 30 s. Amplifications
were performed in a 25-ml reaction volume containing 200 mM dNTPs, 10 mM Tris-HCl (pH 8.9), 50
mM KCl, 0.1% Triton X-100, 1 U Taq polymerase, and 20 ng genomic DNA.

20.2% (Pittsburgh). It is important to note that two
independent samples from African Americans living in
Philadelphia point to a relatively low European contri-
bution (12.7% and 13.8%, respectively). Southern Af-
rican Americans show a wide range of European influ-
ence, from 11.6% (Charleston) to 22.5% (New
Orleans), the lowest and highest values, respectively, ob-
served for the U.S. populations we analyzed. Finally, the
sample from Jamaica shows evidence of a much lower
European genetic contribution (6.8%) than that found
in any of the African American populations. The vari-
ance associated with the admixture estimates is very low
for all the populations studied. By Long’s method, which
incorporates the effect of the evolutionary and sampling
variance in the admixture estimates, the standard errors
range between 1.3% (Charleston and Jamaica) and
2.7% (Detroit).

We also tested for heterogeneity in the individual locus
admixture estimates within the populations sampled.
The x2 test showed no evidence of significant hetero-
geneity in any of the populations (data not shown), and
we observed no systematic deviations for any of the loci
and therefore no evidence of the action of natural se-
lection in the markers considered in the present analysis.

Admixture Estimates Based on mtDNA and Y
Chromosome Data

We analyzed these 10 African American and Jamaican
samples for the presence of six population-specific
mtDNA haplogroups (L, H, A, B, C, and D) and the

YAP element. The relevant data are summarized in Table
6. L and H are the most common haplogroups that are
unique to African and European populations, respec-
tively (Torroni et al. 1994, 1996; Chen et al. 1995), and
can be used to test the relative African and European
maternal contribution to African Americans and Ja-
maicans. The first two data columns of Table 6 indicate
the m values based on the L and H haplogroups, and,
in the third data column, we indicate the average
mtDNA value. The European maternal contribution is
lower than the average estimate obtained for the nine
autosomal markers analyzed in this study (see Table 5).

Haplogroups A, B, C, and D are Amerindian-specific
haplogroups that together account for almost all Am-
erindian mtDNAs (Wallace and Torroni 1992) and are
thus especially suitable for testing the importance of the
Amerindian influence in the African American maternal
line. Of the 11,000 African Americans analyzed, we de-
tected only 4 individuals with an Amerindian haplo-
group. Two individuals in Maywood, one in Baltimore,
and one in Houston showed the Amerindian B haplo-
group. Several other samples have the 9-bp deletion, but
since it appears to be associated with the L African hap-
logroup and lacks the characteristic pattern observed in
Amerindian B haplogroups for the diagnostic sites DdeI
10394 and AluI 10397 (��), it is most likely of African
origin (Soodyall et al. 1996).

The YAP marker (Hammer 1994) is very useful for
the characterization of the male European contribution,
given the difference in frequency of the Alu insertion
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Table 4

Allele Frequencies of the Autosomal PSAs Analyzed

Population APO*1 AT3*1 FY-NULL*1 ICAM*1 LPL*1 OCA2*1 RB2300*1 Sb19.3*1 GC-1F GC-1S

Africans
Nigeria-1 .409 .889 .000 .772 .957 .078 .917 .457 .849 .081
Nigeria-2 .480 .875 .000 .697 .985 .124 .944 .455 .846 .085
Central African Republic .435 .859 .000 .798 .978 .092 .900 .364 .778 .067

African average .441 .874 .000 .756 .973 .098 .920 .425 .824 .078
Europeans

England .934 .291 1.000 1.000 .528 .695 .294 .949 .203 .622
Ireland .915 .279 1.000 1.000 .397 .761 .287 .943 .133 .633
Germany .933 .267 1.000 1.000 .533 .850 .417 .839 .133 .567

European average .927 .279 1.000 1.000 .486 .769 .333 .910 .156 .607
D( pafr�peur )F F .486 .595 1.000 .244 .487 .671 .588 .485 .668 .529

African Americans
Maywood, Ill. .520 .770 .185 .795 .848 .203 .776 .465 .710 .177
Detroit .533 .818 .133 .798 .878 .207 .849 .659 .722 .200
New York .522 .668 .210 .755 .890 .220 .821 .557 .738 .146
Philadelphia-1 .494 .767 .149 .750 .911 .153 .851 .524 .795 .125
Philadelphia-2 .504 .774 .160 .750 .911 .137 .802 .467 .771 .169
Pittsburgh .551 .747 .217 .768 .845 .253 .807 .500 .743 .129
Baltimore .505 .727 .141 .859 .872 .156 .855 .552 .779 .176
Charleston, S.C. .500 .770 .112 .777 .931 .208 .888 .522 .765 .133
New Orleans .593 .727 .200 .829 .865 .284 .842 .550 .669 .215
Houston .525 .742 .188 .753 .890 .208 .802 .440 .744 .148

Jamaicans .511 .810 .065 .742 .935 .091 .870 .522 .790 .113
European Americans

Detroit .935 .271 .990 1.000 .365 .854 .344 .938 .181 .564
Pittsburgh .917 .350 .983 1.000 .417 .817 .283 .897 .172 .569
Louisiana (Cajuns) .935 .239 .989 1.000 .500 .691 .350 .922 .106 .628

NOTE.—We have followed the convention of defining the presence of Alu insertions and the absence of the polymorphic restriction sites as
allele 1, the exception being the GC locus, where we have named alleles using the allelic designations of the protein-based assays.

Table 5

Estimated European Ancestral Proportions of
11 Populations of African Descent

Population WLS Gene Identity

Maywood, Ill. 18.8 � 1.4 18.2 � 0.5
Detroit 16.3 � 2.7 16.9 � 0.8
New York 19.8 � 2.1 20.2 � 0.2
Philadelphia-1 12.7 � 1.5 12.6 � 0.0
Philadelphia-2 13.8 � 1.9 13.2 � 0.3
Pittsburgh 20.2 � 1.6 20.1 � 0.4
Baltimore 15.5 � 2.6 15.4 � 0.8
Charleston, S.C. 11.6 � 1.3 12.2 � 0.2
New Orleans 22.5 � 1.6 22.8 � 0.5
Houston 16.9 � 1.5 16.6 � 0.6
Jamaica 6.8 � 1.3 7.4 � 0.2

between Europeans and Africans (180%). The m esti-
mates are also indicated in Table 6. The male European
contribution is substantially higher than the female con-
tribution in every population, as is evident from the es-
timated m values obtained for YAP and mtDNA.

Demonstration of Admixture Linkage Disequilibrium
between Two Markers 22 cM Apart

Two of the PSA markers used to estimate admixture
(FY and AT3) are located in the same chromosomal
band. In fact, mapping data show that FY and AT3 are
linked at a distance of ∼22 cM (male distance � 18 cM
and female distance � 23 cM [Cooperative Human
Linkage Center, Genetic Location Database]). We cre-
ated pairwise haplotypes of FY and the other eight loci
to test whether there is detectable linkage disequilibrium
between FY and AT3 or between FY and any of the
other PSAs typed. Haplotype frequencies were estimated
by means of the expectation maximization algorithm as
implemented in a program provided by Dr. Long (1995).
This method has proved capable of generating very ac-
curate estimates of multilocus haplotype frequencies
without families. Table 7 shows the level of D′, the like-
lihood ratio statistic, and the corresponding P value for
significant results. A positive D′ indicates a higher-than-

expected frequency of haplotypes with both African-spe-
cific alleles, and a negative D′ indicates the combination
of a European allele in one locus with an African allele
in the other locus. In the case of the haplotype frequen-
cies of FY and AT3, a positive disequilibrium is consis-
tently found in all the African American populations
(with the exception of Maywood, which is in equilib-
rium), and in 6 of the 10 populations (New York, Bal-
timore, Charleston, New Orleans, Houston, and Ja-
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Table 6

African American and Jamaican Ancestral Proportions
Determined by Using mtDNA and Y PSAs

Population
HAP-L

(%)
HAP-H

(%)
mtDNA

(%)
YAP
(%)

Maywood, Ill. 16.61 .00 8.31 24.32
Detroit �.01 .00 .00 30.33
New York 18.23 .00 9.11 18.58
Philadelphia-1 8.12 13.93 11.02 22.94
Philadelphia-2 .03 5.66 2.84 23.55
Pittsburgh 11.24 8.56 9.90 23.87
Baltimore 24.89 4.99 14.94 22.79
Charleston, S.C. 12.92 .00 6.46 NA
New Orleans 10.75 3.33 7.04 46.88
Houston 10.97 2.64 6.80 8.55
Jamaica 25.86 .00 12.93 17.89

NOTE—One individual from Baltimore, one from Hous-
ton, and two from Chicago had one of the Amerindian
haplogroups (Hap B). NA � not available; only females in
the sample.

maica) there are significant differences with respect to
the expected frequencies. With the Bonferroni correction
for multiple tests ( ), the deviations are stilla � 0.005
significant in two populations (New York and New Or-
leans, ) and border on significance in BaltimoreP ! .001
( ). We constructed haplotypes of the otherP � .006
seven loci with FY to test whether the significant asso-
ciation observed between FY and AT3 is truly a function
of the linkage between these two markers or is the result
of genomewide association among informative PSA
markers due to substructure. In these comparisons we
observe both positive and negative D′ values, and only
7 of the 70 tests show significant deviations. After the
Bonferroni correction for multiple tests, none of the de-
viations were significant.

Discussion

Admixture in African American and Jamaican
Populations

We have estimated the admixture proportions in 10
populations from different geographic areas in the
United States and Jamaica, using a set of very infor-
mative autosomal markers. These values can be com-
pared with those reported in the literature (Table 8). Our
estimate for the Pittsburgh sample ( ) is20.2% � 1.6%
not significantly different from the one obtained by
Chakraborty et al. (1992) for the same population
( ), employing the identical statistical25.2% � 2.7%
method (Long’s WLS method). The m value for New
York (19.8%) is also consistent with previously reported
estimates (18.9%; Reed 1969). However, there are also
several discrepancies with respect to data published else-
where. Our estimate for Baltimore (15.5%) does not
seem to agree with the estimates based on Rh, GM, and

FY (Glass and Li 1953; Glass 1955; Workman 1968;
Reed 1969), 120% in all cases. A similar situation is
observed in the sample from Detroit, which shows a
lower level (16.3%) in the present study than in previous
studies (26%, Reed 1969). With respect to the southern
populations, our m value for Charleston (11.6%) is
slightly higher than previous estimates (4%–8%, Work-
man 1968). There are no data concerning the other pop-
ulations included in this analysis (Maywood, Philadel-
phia, New Orleans, Houston, and Jamaica).

Previous studies have indicated that northern U.S.
populations show a higher level of European ancestry
than do southern U.S. populations. Nevertheless, the re-
sults of the present study seem to indicate that the sit-
uation is much more complex than previously thought.
There appears to be a significant degree of variation in
the admixture level of northern populations (from 13%
in Philadelphia to 20% in Pittsburgh). It is also clear
that, in general, the European ancestry of northern Af-
rican American populations is somewhat lower than pre-
vious reports have described. The agreement of estimates
based on independent African American population
samples from Philadelphia is notable and strengthens the
support for the accuracy of these estimates.

The three southern African American populations
(New Orleans, Houston, and Charleston) show a wide
range of admixture values (11.6%–22.5%). The
Charleston population is of special interest because data
on admixture proportions in African Americans from
the former southern British colonies (South Carolina and
Georgia) have been used to postulate differences in gene
flow between the northern and southern African Amer-
ican populations. The population of Charleston shows
the lowest m value (11.6%) of all the U.S. populations
analyzed in the present study, but it is not very different
from the estimates of one of the northern African Amer-
ican populations—namely, Philadelphia. It would be
very interesting to have data on additional samples of
southern African American populations to confirm the
existence of a low European contribution in this partic-
ular area and to study the extent of heterogeneity in the
admixture proportions at this geographical level.

One explanation for the lower-than-expected and het-
erogeneous levels of European admixture in the urban
northern African Americans can be formed on the basis
of the demographic history of African American pop-
ulations. In the period after World War I, there were
significant changes in the distribution of African Amer-
icans in the United States. In the largest internal migra-
tion in the history of North America, southern African
Americans, constituting the immense majority (∼90%)
of the total African American population, left the rural
South in search of new opportunities in the urban areas
of the North. It is known that big cities such as Chicago,
Detroit, New York, Philadelphia, Pittsburgh, and Bal-
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Table 8

European Genetic Contribution to African American and
Jamaican Populations Analyzed

Population and Reference m

Non-Southern
Detroit

Reed (1969) 26.0
Present study 16.3 � 2.7

Maywood, Ill.
Present study 18.8 � 1.4

New York
Reed (1969) 18.9
Present study 19.8 � 2.1

Philadelphia
Present study (Philadelphia-1) 12.7 � 1.5
Present study (Philadelphia-2) 13.8 � 1.9

Pittsburgh
Chakraborty et al. (1992) 25.2 � 2.7
Present study 20.2 � 1.6

Baltimore
Glass and Li (1953) 30.6
Glass (1955) 21.6
Present study 15.5 � 2.6

Oakland
Adams and Ward (1973) 21.9

Southern
Charleston, S.C.

Workman (1968) 4–8
Adams and Ward (1973) 4
Present study 11.6 � 1.3

Claxton, Ga.
Long (1991) 13.6 � 5.1

Sapelo Island, Ga.
Long (1991) 6.8 � 5.5

James Island, S.C.
Adams and Ward (1973) 15.3

Evans and Bulock, Ga.
Workman et al. (1963)a 10.4
Blumberg et al. (1964)a 7.3

New Orleans
Present study 22.5 � 1.6

Houston
Present study 16.9 � 1.5

Jamaica
Present study 6.8 � 1.3

a From Chakraborty (1986).

timore experienced a very significant increase in the
number of African American residents, both in absolute
and in relative terms (Johnson and Campbell 1981; Tan-
ner 1995). Given the existence of a North/South cline
in admixture proportion, the reason for the lower Eur-
opean admixture observed in particular populations may
be due to more recent immigrants from the rural South.
Unfortunately, we have no data concerning the geo-
graphic origin of the individuals in any of our samples,
so there is no direct way to test this hypothesis. Further
knowledge of the European genetic contribution to Af-
rican American populations from additional southern
states that greatly contributed to the “Great Migration”

(the cotton belt states—Mississippi, Alabama, and Geor-
gia) and the availability of northern samples with family
demographic information would be important to clarify
this point.

In any case, our study shows that not all the southern
African American populations have as low a European
genetic contribution as that found in the Charleston sam-
ple. The estimate for Houston (16.9%) is similar to other
values observed in northern urban populations (Detroit
and Baltimore), and New Orleans shows the highest m
value of the cities studied (22.5%), which deserves spe-
cial attention. The history of the Louisiana territory has
been quite different from the history of other southern
regions in the United States. This area was under French
rule for a substantial period, until it became part of the
Spanish territory in 1763 and, finally, of the United
States some decades later, in 1803. Both the geographic
origin of the slaves imported to Louisiana and their
status during the French domination have been distinct
from what happened in the southern British colonies
(e.g., South Carolina). There have been historical ac-
counts of more substantial intermixture in the New Or-
leans area (Williamson 1995; Piersen 1996), so this
could partly explain the observed differences in ancestral
proportions between Charleston and New Orleans.

Finally, we also characterized the European admixture
in a sample from Jamaica, which shows a very low m
value (6.8%). Further studies of Caribbean populations
of African ancestry are needed to confirm this low Eur-
opean genetic contribution.

The standard errors of the estimates are very small,
ranging from 1.3% (Charleston and Jamaica) to 2.7%
(Detroit). It is not possible to directly compare the mag-
nitude of the standard errors of our estimates with those
of many of the classical estimates in the literature, which
were based mainly on single markers and used a different
statistical methodology (in which only the sampling er-
ror, but not the evolutionary error, was taken into ac-
count). However, we may use as a reference the paper
of Chakraborty et al. (1992), in which Long’s WLS
method was used to analyze data on 52 alleles at 15
protein-coding loci in a sample of African Americans
living in Pittsburgh. All of our estimates have a lower
associated standard error (2.7%) than that reported by
Chakraborty et al. (1992). This comparison stresses the
importance of an appropriate selection of markers for
a precise estimate of the admixture proportions. Another
critical factor for admixture estimation is the represen-
tative parental population samples that are available. An
inadequate selection of parental populations may seri-
ously bias estimates of admixture. An interesting ex-
ample is the well-known estimate of Glass and Li (1953)
of the European gene contribution to the Baltimore pop-
ulation on the basis of the Rh system. The original es-
timate was 31%, which, in light of new data on African
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frequencies, was revised, 2 years later, to 22% (Glass
1955). We have typed three African samples (two from
Nigeria and one from Central African Republic) and
three European samples (from Great Britain, Ireland,
and Germany) to estimate the parental frequencies. The
aforementioned populations contributed substantially to
the origin of the African American populations. These
African populations are reasonably good representatives
of the populations involved in the slave trade that af-
fected a wide area of western and west central Africa.
In addition, none of the markers we tested show any
evidence of heterogeneity in the gene frequencies of the
three samples representative of the African parental pop-
ulations, which minimizes the possibility of introducing
bias due to the unequal contributions of the different
slave areas to the original populations of African descent
living in the United States. With respect to the European
samples, England, Ireland, and Germany have been main
sources for the European migration to North America
(Tanner 1995). Other relevant areas of Europe (e.g., It-
aly) are not represented in this study, but, given the
known genetic homogeneity of the European popula-
tions, it is unlikely that this would affect the admixture
estimates in any significant way. Supporting this is the
fact that the gene frequencies of the three European
American populations analyzed here are very similar to
the European average frequencies (Table 4). The Euro-
pean samples also show homogeneity for the gene fre-
quencies of almost all markers, with the exception of
LPL and Sb19.3.

In addition to the data on the autosomal markers,
further insight on the nature and dynamics of admixture
may be obtained by using maternally and paternally
transmitted markers (mtDNA and the nonpseudoauto-
somal region of the Y chromosome, respectively). The
results of this analysis strongly indicate a sex-biased Eur-
opean contribution, in contradiction with the only other
information available to date (Hsieh and Sutton 1992).
In every population there is evidence of a higher Euro-
pean male contribution, as indicated by the m values
obtained for YAP and mtDNA. Therefore, even if mar-
riages between African American men and European
American women are currently more common than mar-
riages between African American women and European
American men (see, e.g., Wilkinson 1975 and Piersen
1996), it seems clear that during a substantial part of
African American history, men of European descent have
made a more significant genetic contribution to the Af-
rican American gene pool than have women of European
descent. This is in accordance with the historical data
regarding the period of slavery in the United States (Wil-
liamson 1995).

We have also tried to clarify the extent of the Am-
erindian contribution to the African American gene
pool. There have been accounts of substantial contact

among North American Indians and people of African
descent in specific periods of U.S. history, especially in
regions such as the Mississippi delta and Florida (Katz
1986). Some early anthropological reports have empha-
sized the high proportion of African American college
students claiming some Amerindian ancestry (Herskovits
1930; Meier 1949). In fact, the importance of the Am-
erindian contribution to the African American gene pool
has been a matter of controversy since the first studies
of African American admixture (Roberts 1955; Glass
1955). However, practically all admixture studies of Af-
rican American populations to date have employed a
dihybrid model (African/European) instead of a trihy-
brid model (African/European/Amerindian). We tested
our African American samples for the presence of the
common Amerindian-specific mtDNA haplogroups (A,
B, C, and D), and detected just 4 individuals with an
Amerindian haplogroup, among 11,000 African Amer-
icans. This indicates that the contribution from Amer-
indians has been of little importance in the 10 popula-
tions of African descent we have characterized, at least
on the maternal line.

We also determined the extent of the African contri-
bution to three European American populations from
several areas in the United States: Detroit, Pittsburgh,
and Louisiana (Cajuns). The presence of the FY null
allele in the three populations clearly indicates an intro-
gression of African genes into the European American
gene pool, but the African contribution globally seems
to have been very limited, ∼1% (mean � SEM: Detroit

; Pittsburgh ; and Cajuns0.5% � 0.7% 1.2% � 0.9%
).0.7% � 0.6%

Application of Admixed Populations for Mapping
Disease Genes

In the last few years, interest in admixed populations
has been increasing. In 1988, Chakraborty and Weiss
described a new method for mapping disease genes, us-
ing admixed populations. This method is based in the
linkage disequilibrium created when two ethnically dis-
tinct populations hybridize, and it should be very useful
for mapping disease genes showing high prevalence dif-
ferences among the parental populations. Non–insulin-
dependent diabetes mellitus and obesity (disproportion-
ately common among Hispanics and African Ameri-
cans), hypertension (among African Americans), lung
and prostate cancer (among African Americans), and
other anthropological traits could be studied by this
method. Stephens et al. (1994) and Briscoe et al. (1994)
further extended the work of Chakraborty and Weiss
1988, using computer simulations, and introduced the
acronym “MALD” (mapping by admixture linkage dis-
equilibrium) to designate this method. Their results in-
dicated that, using sample sizes of 200–300 patients,
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typed for 200–300 evenly spaced markers, each having
130% frequency difference between the parental pop-
ulations, one would have a 195% chance of locating the
causative gene. Our own simulations (unpublished data)
show that microsatellites would be as informative as
dimorphic markers for MALD studies. It has also been
proposed by McKeigue (1997) and Kaplan et al. (1997)
that the linkage disequilibrium that results from recent
admixture could also be used to detect disease genes for
qualitative or quantitative traits by means of the trans-
mission disequilibrium test (Spielman et al. 1993; Allison
1997). The aforementioned theoretical studies predict
that linkage disequilibrium would be detectable in ad-
mixed populations even between relatively distant mark-
ers (10–20 cM). As described above, we detected a sig-
nificant nonrandom association between two of the PSAs
analyzed in the present study: FY-null and AT3, located
on the large arm of chromosome 1 at a distance of 22
cM. The most likely explanation is that this association
is the result of admixture linkage disequilibrium that was
generated through the hybridization of the parental pop-
ulations of these African American populations and has
persisted, extending over a distance of 22 cM. Popula-
tion substructure could also potentially result in non-
random associations among such PSA loci. However, if
this were the cause of the FY/AT3 associations observed
in these populations, we would expect to detect a higher
number of significant associations for the other seven
loci and would also expect to observe deviations from
Hardy-Weinberg equilibrium. This observation of a sig-
nificant linkage disequilibrium over such long distances
as a result of admixture is encouraging, and it empha-
sizes the utility of admixed populations as an important
resource for mapping disease genes.

Conclusions

The present study indicates that the admixture process
that began with the arrival of the first Africans at the
British colonies 1250 years ago has been very complex.
Even if our data tend to corroborate the existence of
differences in the extent of European contribution to
southern and nonsouthern African Americans, it seems
that recent demographic processes that have dramati-
cally changed the distribution of African Americans in
the United States have substantially altered the global
picture. Of special importance has been the Great Mi-
gration, a massive movement of African Americans from
the rural areas in the South to the urban areas in the
North, which took place after the World War I. Thus,
it is possible that the differences in the admixture pro-
portion observed among African American samples in
northern cities is a consequence of the different per-
centages of African Americans of southern origin cur-
rently living in those areas. In addition, the substantial

differences in the histories of the diverse areas of the
United States may account for the variation observed in
the admixture proportions. Such seems to be the case
for New Orleans, which shows a much higher European
contribution than that found in Charleston.

Admixed populations are an important resource that
can and should be used to study the genetics of complex
disease. A prerequisite to this application is a better un-
derstanding of the admixture proportions and dynamics
of the admixture process. We have established a panel
of genetic markers that have high levels of allele fre-
quency differential between the parental populations
and low levels of heterogeneity within continents. We
propose that these markers could serve as a core marker
panel for future studies of admixture in additional pop-
ulation samples. It is notable that most of these markers
also show substantial frequency differences between Af-
rican and Amerindian populations (data not shown) and
should thus also be useful for estimating the African
contribution to U.S. Hispanic and Amerindian popula-
tions. Use of a common set of informative markers for
studies of admixture will make it possible to compile
data from a number of populations and laboratories to
construct a U.S. admixture map.
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